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1.  INTRODUCTION 
 

Portfolio selection has been a core research area in finance since the invention of the 
Markowitz (1952) mean-variance framework. Despite significant developments in this 
field, the performance of existing portfolio-selection methods is not yet satisfactory, 
mainly due to the multifaceted requirements of actual portfolio-selection problems.  

One important problem occurs when many assets are included as investment assets. 
As more assets are considered for portfolio investment, many more parameters must be 
estimated. This “curse of dimension” inevitably leads to inaccurate estimations and thus 
a poor portfolio investment performance.1 This problem is often addressed using the 

 

* I gratefully acknowledge financial support from IREC, the Institute of Finance and Banking, Seoul 

National University. I am very grateful to Dongchul Kim for his helpful comments during the SNU (IREC) 

seminar. 
1 Many other important issues are also associated with actual portfolio-selection problems. For example, 

it is difficult to perform multiperiod portfolio selection with many assets. The extension of usual preferences 

to incorporate behavioral anomalies is another potential issue. Furthermore, this approach also has important 

implications for accounting for random investment horizons, market friction, and background risks. See 
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factor approach,2 which assumes that a small number of factors can succinctly describe 
the dynamics of many asset returns. Thus, the direct estimation of the first and second 
moments of many expected asset returns is avoided, greatly enhancing the estimation 
accuracy and, ideally, improving the portfolio investment performance. The success of 
the factor approach significantly depends upon the quality of the factors used. The most 
popular factors for portfolio selection have been chosen among the asset-pricing factors 
that have proven to successfully account for multiple asset returns.3 This convention is 
understandable, as we expect quite similar roles for factors in both asset-pricing and 
portfolio-selection problems.  

Recently, Suh, Song, and Lee (2014) proposed a new method to form 
well-diversified portfolios as asset-pricing factors. These new factors are formed from a 
well-characterized subset of the asset universe, called basis assets. These basis assets are 
structured based on firm characteristics found by previous studies to be useful for 
explaining (co)variation in asset returns. The new factors have several advantages. For 
example, instead of arbitrarily selecting a small number of firm characteristics among 
many candidates, the new factors consider all of these firm characteristics. Moreover, 
the new factors are constructed in such a way as to account for both time-series and 
cross-sectional variations of asset returns. Because the new factors can flexibly 
incorporate new firm characteristics, they will better represent the asset universe as more 
firm characteristics are found in the future. Suh, Song, and Lee (2014) apply the new 
factors to U.S. equity return data and show empirical results that the new factors exhibit 
better asset-pricing performance than popular extant asset-pricing factors do. 

In this paper, we apply the new factors proposed by Suh, Song, and Lee (2014) to 
portfolio-selection problems and compare portfolio investment performances with other 
popular asset-pricing factors and also other portfolio-selection methods. The 
performance comparison results indicate that the new factors exhibit better portfolio 
investment performance than alternative methods for various test portfolios and various 
periods. 

The rest of the paper is organized as follows. Section 2 explains the method of 

 

Brandt (2010) for a survey and relevant references. 
2 In addition to the factor approach, other approaches have been proposed. For example, the shrinkage 

estimation approach is simple to implement but provides significant improvement in many cases (see, e.g., 

James and Stein, 1961; Jobson et al., 1979; Jobson and Korkie, 1981; Frost and Savarino, 1986; Jorion, 1986; 

DeMiguel et al., 2013; among others). On the other hand, a decision-theoretic approach explicitly takes into 

account parameter uncertainty and informative priors. Zellner and Chetty (1965), Klein and Bawa (1976), 

and Brown (1978) are among the first to apply the decision-theoretic approach to portfolio-selection 

problems. Black and Litterman (1992) and Pástor (2000) attempt to use economic theories as informative 

priors. Recently, Brandt et al. (2009) parameterize the portfolio weights as a function of observable variables 

(see Hjalmarsson and Manchev (2012) for a related analysis). 
3 Another way of finding factors for portfolio selection is to use statistical factor analysis (e.g., Roll and 

Ross (1980) and Connor and Korajczyk (1986)). 
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finding new factors. Section 3 discusses the data and the new factors. It also describes 
the extant asset-pricing models to be compared. The empirical results of the model 
performance comparison are provided in Section 4. Section 5 concludes. 

 
 

2.  METHODOLOGY 
 
In this section, we explain the method used to form the new factors from 

firm-characteristics-based portfolios. This method generates two classes of factors: 
time-series factors and a cross-sectional factor. The time-series factors aim to capture 
mainly time-series variations of asset returns, while the cross-sectional factor intends to 
capture cross-sectional variations of asset returns. We then discuss several popular 
extant asset-pricing factors for comparison purposes. We also discuss the problem of 
portfolio selection with factors. 

 
2.1.  Method to Construct New Factors 
 
For expositional purposes, we briefly explain the method used to form the new 

factors proposed by Suh, Song, and Lee (2014). The new method attempts to construct 
factors from a subset called basis assets rather than the asset universe. This restriction 
greatly facilitates factor formation at the cost of potential information loss. To minimize 
this cost, it is necessary to form appropriate basis assets. Good basis assets are expected 
to represent the characteristics of the asset universe well. Details about how to construct 
the basis assets will be discussed in the next section.  

We intend to form factors from linear combinations of the chosen   basis assets. 
For this purpose, we will employ principal component analysis (PCA). PCA conducts an 
orthogonal transformation of the data matrix to convert possibly correlated variables into 
linearly uncorrelated variables called principal components, which can be regarded as 
factor realizations in a multifactor framework. Moreover, because the principal 
components are sorted according to their explanatory power, we select the first   
principal components as a subset (denoted by   ) of the new factors. To be concrete, we 
denote   as the  ×   excess return data matrix of the basis asset returns with   
periods and   as the  ×   cross-product of  , i.e.,  =  ′ / . The new factors    
will be constructed as weighted averages of   basis assets, where the first   
eigenvectors of   serve as the weights. These first   principal components basically 
account for both the time-series and cross-sectional variations of the data matrix by 
assigning equal weights to the two-dimensional variations. However, because 
time-series variations are typically much greater than cross-sectional variations in the 
well-diversified portfolio return data, these factors match the time-series variations 
better than the cross-sectional variations; thus, we call these factors the time-series (TS) 
factors. 

The TS factors alone might not yield satisfactory results in terms of cross-section 
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performance as measured by, for example, the HJ-distance measure or the 
cross-sectional regression    measure because the TS factors are constructed to mainly 
capture the time-series variations.4 Accounting for cross-sectional variations of asset 
returns is important for not only asset pricing but also portfolio selection. Successfully 
accounting for cross-sectional variations may yield accurate estimates of asset 
correlations and thereby good portfolio investment performance. To improve the ability 
to capture cross-sectional variations, the new method suggests finding an additional 
factor in the presence of the   TS factors. We denote by   the total   principal 
components of  . Because we select the TS factors    as the first   principal 
components of  ,    is the first   columns of  , denoted by   . To construct the 
cross-sectional (CS) factor, we now focus on the cross-sectional pricing error  , which 
is defined as  ≡  [   ] − 1 , where	  is a vector of gross returns on   basis assets, 
  is the stochastic discount factor, and 1  denotes an   vector of ones. Importantly, 
we can obtain zero cross-sectional pricing errors for   basis assets by appropriately 
choosing one additional factor, the single cross-sectional factor. We denote by    the 
remaining  −  − 1 principal components by excluding the last principal component 
because of the inclusion of constant term in the stochastic discount factor  . In the 
presence of the TS factors	  (=   ), the time-series realization of the stochastic discount 
factor   is specified as 

 
  =   +     +     ≡   ,           (1) 
 

where  ≡ [1,   ,   ]  and  = [  ,   ′,   ′]′ . Now, by simply imposing zero 
cross-sectional pricing errors on   basis assets, the coefficient   can be determined; 
that is, from the zero pricing error condition 
 

 ≡  [   ] − 1 =
 

 
    − 1 = 0 ,         (2) 

 
we obtain the estimate of   as follows: 

 
  =  [ ′ ]  1 ,             (3) 

 
where 0  denotes an   vector of zeros and	  is the data matrix of gross returns. Our 
proposed cross-sectional factor is then formed as an average of the principal components 

 
4 The Hansen-Jagannathan (HJ) distance was proposed by Hansen and Jagannathan (1997) and has been 

widely used for model diagnosis and selection (e.g., Jagannathan and Wang (1996), Jagannathan, Kubota, 

and Takehara (1998), Campbell and Cochrane (2000), Lettau and Ludvigson (2001), Hodrick and Zhang 

(2001), and Chen and Ludvigson (2004)). Another popular goodness-of-fit measure for a model is the 

cross-sectional   , which is analyzed by Kandel and Stambaugh (1995) and Kan, Robotti, and Shanken 

(2013).  
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   with weights     (the estimate of   ); that is, the cross-sectional factor is a linear 
combination of the remaining  −  − 1 principal components, specified as follows: 
 

  =      .              (4) 
 
Notice that we need only one CS factor to make the cross-sectional pricing errors 

equal zero, whereas we need multiple TS factors. 
Some remarks about the new method are in order. First, fundamental factor models 

(e.g., the Fama-French three-factor model) directly construct factor realizations by 
choosing some firm characteristics, sorting the cross-section of assets based on the 
characteristics, and then forming a hedge portfolio that is long in the top quintile and 
short in the bottom quintile. As more relevant firm characteristics are discovered, more 
factors should be added; otherwise, some factors should be arbitrarily chosen. Similarly 
to fundamental factor models, the new method utilizes firm characteristics to construct 
factors; however, it does not necessarily increase the number of factors, even if more 
firm characteristics are to be taken into account.  

Second, the new method differs from the usual statistical factor models in several 
ways. Factors under statistical factor models are unobservable and to be extracted from 
asset returns; thus, it is difficult to link statistical factors with firm characteristics or 
economic variables. In contrast, the new factors are directly linked with firm 
characteristics because the basis assets are formed from firm characteristics. In addition, 
the new method takes into account both TS and CS variations and includes a single CS 
factor, which also makes the new method different from the usual PCA.  

Third, the new method utilizes the PCA to form new factors. Factor analysis is an 
alternative statistical method for that purpose. We choose the PCA by considering that 
typical algorithms for factor analysis are not efficient for very large problems and that 
traditional factor analysis is only appropriate with strong assumptions of 
cross-sectionally uncorrelated, serially uncorrelated, and serially homoscedastic 
disturbances. 

 

2.2.  Extant Asset-Pricing Factors 
 
For the performance comparison of the new factor model with other extant models, 

we will consider several popular extant asset-pricing models. Specifically, we select 
three asset-pricing models, described as follows. 

The first model is the CAPM of Sharpe (1964), Lintner (1965), and Black (1972), 
which specifies the excess return of ith asset at time t as 

 
  , =   +     ,     , +   , 

    ,          (5) 

 
where     ,  denotes the excess return of the market portfolio at time t. 

The second model is the three-factor model (FF3) of Fama and French (1993), where 
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the excess return of ith asset at time t is specified as 
 
  , =   +     ,     , +     ,     , +     ,     , +   , 

   ,     (6) 

 
where     ,  denotes the return difference between portfolios of small and large stocks, 
and     ,  is the return difference between portfolios of high and low book-to-market 

ratios. 
The third model is the four-factor model (FF4) combining the Fama and French 

(1993) three-factor model with Carhart’s (1997) momentum factor, under which the 
excess return of ith asset at time t is specified as 

 
  , =   +     ,     , +     ,     , +     ,     , +     ,     , +   , 

   ,  (7) 

 
where     ,  denotes the return difference between portfolios of winner and loser 

stocks. 
 

2.3.  Portfolio Selection with Factors 
 
Suppose we consider an asset universe consisting of   risky assets (which differ 

from the   basis assets) and a riskless asset. In a mean-variance framework, the optimal 
portfolio of the risky assets, the “tangency portfolio,” is the portfolio with the maximum 
Sharpe ratio among all portfolios of the   risky assets. If we denote by    the vector 
of excess returns of these   risky assets at time   with mean   and covariance matrix 
  and denote by   

∗  the tangency portfolio weight, then a standard result from the 
mean-variance framework specifies that 

 
  

∗ = (1     )      .            (8) 
 
In a linear multifactor model, the risky asset returns are specified as 
 
  =  +    , +   ,            (9) 

 
 [  ] = 0,			 [    

 ] =  ,           (10) 
 

    ,  =   ,			    ,   , ′ =   ,         (11) 

 
where   ,  indicates a   vector of factors,   is an   vector,   is an  ×   matrix, 

Σ is an  ×   matrix,    is a   vector, and    is a  ×   matrix. Under the 
above linear multifactor model, the mean and covariance matrix are derived as 
 

 =  +    ,            (12) 
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 =  Σ   + Σ.            (13) 
 
By substituting Eqs. (12) and (13) into Eq. (8), we obtain the tangency portfolio 

weights   
∗  in the linear multifactor model.5  

 
 

3.  DATA AND PRICING FACTORS 
 
3.1.  Test Portfolios 
 
The out-of-sample performance of portfolio investment will be measured with actual 

test portfolios. For robustness, data availability, and representativeness, we choose four 
sets of 26 test portfolios: equal-weighted market portfolio (EW) plus (i) 25 
value-weighted portfolios (SIZE×BM; combinations of size quintiles and book-to- 
market quintiles), (ii) 25 size and short-term-reversal combinations (SIZE×STR), (iii) 25 
size and momentum combinations (SIZE×MOM), and (iv) 25 size and 
long-term-reversal combinations (SIZE×LTR).6 Portfolio sorts are used extensively 
throughout finance to establish and test for systematic cross-sectional patterns in 
expected stock returns related to firm or stock characteristics. While sorts on a single 
characteristic, such as firm size, are very common, double sorts on multiple 
characteristics are also widely used and can represent the actual asset universe well.7 

Table 1 shows summary statistics of the four sets of test portfolios during the sample 
period from July 1936 to December 2013 for the SIZE×BM and SIZE×STR test 
portfolio sets, from January 1938 to December 2013 for the SIZE×MOM test portfolio 
sets, and from January 1950 to December 2013 for the SIZE×LTR test portfolio sets. 
The mean excess returns are differentiated among portfolios within the same test 
portfolio set. Panel B shows that the test portfolios exhibit similar levels of average 
correlations within and between classes, implying that the test portfolio sets are 
complementary to one another. 

 
 
 

 
5 MacKinlay and Pástor (2000) derive the tangency portfolio weights under the assumption that factor 

portfolios are also included as investable assets. In contrast, we do not include factor portfolios as investable 

assets. 
6 MacKinlay and Pástor (2000) document evidence that the EW passive portfolio performs well 

compared to other portfolio-selection methods. To improve portfolio performance and take into account this 

evidence, we include the EW in the test portfolios. All double-sort test portfolio data are available on 

Kenneth French’s web page. 
7 See, for example, Fama and French (1993) for double sorts on size and book-to-market ratio and 

Rouwenhorst (1998) for size and momentum, among others.  
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Table 1.  Summary Statistics of Test Portfolios and Their Correlations 
A.  Summary Statistics 

Test portfolio Statistic Min Median Max 
SIZE×BM Mean 0.460  0.860  1.300  

 
S.D. 4.390  5.810  8.890  

 
Skewness -0.568  -0.140  1.439  

 
Kurtosis 5.413  7.273  23.824  

 
Correlation 0.628  0.858  0.955  

SIZE×STR Mean 0.050  0.810  1.680  

 
S.D. 4.420  5.930  8.500  

 
Skewness -0.724  -0.090  1.274  

 
Kurtosis 5.614  7.339  21.448  

 
Correlation 0.630  0.869  0.964  

SIZE×MOM Mean 0.140  0.820  1.550  

 
S.D. 4.580  5.950  8.800  

 
Skewness -2.544  -0.041  1.904  

 
Kurtosis 5.073  8.746  41.653  

 
Correlation 0.523  0.843  0.958  

SIZE×LTR Mean 0.550  0.910  1.290  

 
S.D. 4.330  5.870  8.420  

 
Skewness -0.620  -0.058  1.729  

 
Kurtosis 5.052  7.874  21.217  

 
Correlation 0.632  0.873  0.953  

B.  Average Correlation 

 
SIZE×BM SIZE×STR SIZE×MOM SIZE×LTR 

SIZE×BM 0.846  0.853  0.839  0.854  
SIZE×STR 

 
0.857  0.845  0.858  

SIZE×MOM 
  

0.826  0.844  
SIZE×LTR 

   
0.856  

Note: As the test portfolios, we consider the following four sets of 26 portfolios: the equal-weighted market 

portfolio plus (i) 25 size and book-to-market quintile combinations (SIZE×BM), (ii) 25 size and 

short-term-reversal combinations (SIZE×STR), (iii) 25 size and momentum combinations (SIZE×MOM), and 

(iv) 25 size and long-term-reversal combinations (SIZE×LTR). The table shows the minimum, median, and 

maximum of the means (annualized %), standard deviations (annualized %), skewness, kurtosis, and 

correlations of each set of 26 test portfolios (panel A) and the average correlations (panel B) of these four test 

portfolio classes. In panel B, the diagonal elements indicate the average of the correlations among the 26 test 

portfolio excess returns belonging to the corresponding firm characteristics class, while off-diagonal elements 

show the average of the correlations between two classes of 26 test portfolios belonging to the corresponding 

test portfolio classes. The sample period ranges from July 1937 to December 2013 for the SIZE×BM and 

SIZE×STR test portfolio sets, from January 1938 to December 2013 for the SIZE×MOM test portfolio sets, 

and from January 1950 to December 2013 for the SIZE×LTR test portfolio sets. 

 
3.2.  Basis Assets 
 
The new factors are constructed from basis assets. To obtain high-quality new 

factors, it is necessary to find high-quality basis assets. The quality of the basis assets 
can be judged from at least two aspects: (1) how well the basis assets represent the 
investment opportunity set spanned by the asset universe and (2) the extent that the basis 
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assets are not correlated with one another. 
As a simple approach, Suh, Song, and Lee (2014) suggest finding basis assets among 

readily available, well established, and well diversified portfolios.8 Specifically, to 
generate new pricing factors, we consider as the basis assets the following eight classes 
of firm characteristic portfolios: 10 size-sorted portfolios (SIZE), 10 book-to-market- 
sorted portfolios (BM), 10 earnings-to-price-sorted portfolios (EP), 10 cash-flow-to- 
price-sorted portfolios (CFP), 10 dividend-yields-sorted portfolios (DY), 10 short-term- 
reversal-sorted portfolios (STR), 10 long-term-reversal-sorted portfolios (LTR), and 10 
momentum-sorted portfolios (MOM).9 In total, we have 80 portfolios (i.e., 10 portfolios 
for each of eight classes). Because a typical out-of-sample exercise for portfolio 
selection is repeatedly conducted with relatively few data (for example, 60 months), we 
reduce the number of basis assets by selecting three portfolios (i.e., the first, fifth, and 
tenth deciles) from each firm-characteristic class. Therefore, the basis assets consist of 
24 portfolios (i.e., three portfolios for each of eight classes). This approach of 
constructing the basis assets has at least three advantages. First, it can be easily 
implemented. Second, we can link pricing factors to be constructed from the basis 
portfolios with firm characteristics. Third, this method can readily accommodate new 
firm characteristics that can be found by future studies. 

Table 2 shows summary statistics of the basis assets during the sample period 
ranging from July 1951 to December 2013.10 The mean returns are differentiated among 
deciles for each firm characteristic class. All classes show a similar level of volatility, 
and most are negatively skewed. It is noted that high positive correlations are shown 
among not only basis assets belonging to the same firm characteristic class but also basis 
assets belonging to different classes. This fact may suggest the necessity of including 
many firm characteristics to successfully represent investment opportunities. 

 
 

 
8 According to Markowitz (1952), Cass and Stiglitz (1970), and Ross (1978), the investment opportunity 

set can be reduced to a group of portfolios. By appropriately producing such portfolios, we may obtain good 

basis assets to represent the opportunity set. Ahn et al. (2009) sort individual assets into portfolios using 

statistical cluster analysis, wherein firms are sorted by maximizing the correlation within a group and 

minimizing the correlation between groups. Despite its theoretical advantage, this method incurs high 

implementation costs due to its requirement of a large data set consisting of all individual assets. 
9 These data are also available at Kenneth French's web page. A large body of literature has documented 

many portfolio sorts based on firm or equity characteristics. For the motivations of these eight characteristics, 

refer to Banz (1981) for the size effect, Basu (1977) for the effect of the earnings-to-price ratio, Stattman 

(1980) and Rosenberg et al. (1985) for the effect of the book-to-market ratio, Chan et al. (1991) and 

Lakonishok et al. (1994) for the effect of the cash-flow-to-price ratio, Keim (1983) for the effect of the 

dividend yield, Fama (1965), Jegadeesh (1990), and Lehmann (1990) for a short-term-reversal effect, Carhart 

(1997) for a momentum effect, and Daniel and Titman (2006) for a long-term-reversal effect. 
10 The beginning time of our sample period is determined by the EP and CFP decile data availability. 
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Table 2.  Summary Statistics of Basis Assets and Their Correlations 
Decile SIZE  BM  EP  CFP  DY  STR  MOM  LTR  

A.  Mean 
1 0.825  0.527  0.514  0.508  0.606  0.734  -0.098  0.889  
5 0.817  0.676  0.635  0.685  0.580  0.673  0.530  0.705  
10 0.545  0.969  1.053  1.052  0.638  0.253  1.224  0.599  

B.  Standard deviation 
1 6.053  4.993  5.511  5.390  5.603  6.911  7.582  6.256  
5 5.357  4.307  4.365  4.464  4.564  4.375  4.313  4.280  
10 4.157  5.710  5.217  5.160  4.416  5.300  5.962  5.746  

C.  Skewness 
1 -0.161  -0.274  -0.258  -0.375  -0.439  -0.283  0.636  0.294  
5 -0.517  -0.437  -0.397  -0.531  -0.392  -0.371  -0.300  -0.302  
10 -0.375  0.076  -0.272  -0.347  -0.264  -0.264  -0.456  -0.398  

D.  Kurtosis 
1 5.622  4.371  4.401  4.449  4.735  6.231  7.809  6.266  
5 5.362  5.450  4.878  5.794  6.113  5.028  5.243  5.448  
10 4.527  7.433  5.241  5.203  9.143  5.107  4.904  4.420  

E.  Average correlation 
SIZE 0.908  0.843  0.827  0.825  0.786  0.850  0.818  0.838  
BM 

 
0.846  0.851  0.850  0.827  0.843  0.822  0.842  

EP 
  

0.836  0.850  0.826  0.840  0.819  0.836  
CFP 

   
0.834  0.824  0.838  0.818  0.836  

DY 
    

0.795  0.811  0.797  0.811  
STR 

     
0.842  0.825  0.837  

MOM 
      

0.795  0.812  
LTR 

       
0.824  

Note: As the basis assets, we consider the following eight classes of characteristic portfolios: 10 size-sorted 

portfolios (SIZE), 10 book-to-market-sorted portfolios (BM), 10 earnings-to-price-sorted portfolios (EP), 10 

cash-flow-to-price-sorted portfolios (CFP), 10 dividend-yields-sorted portfolios (DY), 10 short-term- 

reversal-sorted portfolios (STR), 10 long-term-reversal-sorted portfolios (LTR), and 10 momentum-sorted 

portfolios (MOM). The table shows the mean (annualized %, panel A), standard deviation (annualized %, 

panel B), skewness (panel C), kurtosis (panel D), and average correlations (panel E) of these eight basis asset 

classes. In panel E, the diagonal elements indicate the average of the correlations among the 10 basis assets 

belonging to the corresponding firm characteristics class, while the off-diagonal elements indicate the 

average of the correlations between two classes of 10 basis assets belonging to the corresponding firm 

characteristics classes. The sample period ranges from July 1951 to December 2013.  

 

3.3.  Pricing Factors 
 
The new factors are formed from the 24 basis assets, consisting of three portfolios 

for each of eight firm characteristics.11 As shown in Table 2, the basis assets exhibit 
high positive correlations. This feature justifies the use of PCA to reduce multiple firm 

 
11 For the earliest periods when the EP and CFP deciles are not available, the basis assets and the new 

factors are formed by including only available firm-characteristic portfolios. 
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characteristics into a small number of factors.  
The new model includes one CS factor and multiple TS factors. Choosing  , the 

number of factors, is an important step and may significantly affect portfolio-selection 
performance. Instead of arbitrarily choosing	 , we compare for the test portfolios the 
performances of prominent extant models with the new model by including one CS 
factor and varying the number of TS factors, thereby studying the effect of the number 
of the new factors on portfolio investment performances.  

Table 3 shows summary statistics of the new CS and TS factors. The new factors are 
constructed to be uncorrelated to one another. Because the CS factor is determined after 
the determination of the TS factors, the single CS factor is dependent upon the choice of 
the number of TS factors. As more TS factors are included, the volatility of the last TS 
factor diminishes, which is understandable considering the PCA properties. Similarly, as 
more TS factors are included, the volatility of the CS factor also diminishes; however, it 
diminishes at a slower rate and maintains a comparable level to the last TS factor, 
demonstrating that the single CS factor maintains greater importance than the 
corresponding last TS factor. 

 
 

Table 3.  Summary Statistics of New Factors 
Number 
of TSF 

TS Factors CS Factors 
Mean S.D. Skewness Kurtosis Mean S.D. Skewness Kurtosis 

1 -6.042  39.321  0.488  5.102  2.538  5.621  -0.361  4.873  
2 -0.250  7.746  0.838  9.446  2.498  5.479  -0.113  4.192  
3 0.730  7.502  0.001  7.160  2.346  5.252  -0.305  5.152  
4 1.369  5.997  -0.619  8.526  1.773  4.613  -0.012  3.471  
5 -0.570  4.022  0.040  11.476  1.607  4.461  0.034  3.414  

Note: The new factors are formed from 24 basis assets constructed by selecting three portfolios (i.e., the first, 

fifth, and tenth deciles) for each of eight characteristic classes. The table shows the summary statistics of the 

new factors for various TS factors. Note that the CS factor is determined after the determination of the TS 

factors; therefore, the single CS factor is dependent upon the number of TS factors. The sample period ranges 

from July 1951 to December 2013. 

 
 

4.  PORTFOLIO INVESTMENT PERFORMANCES 
 
In this section, we provide the out-of-sample portfolio investment results from 

several popular models for comparison with the results of the new factor models by 
varying the number of the new factors. Portfolio investment performances are measured 
by the Sharpe ratio. In addition to the three prominent extant factor models described in 
subsection 2.2, we include a sample moment approach, which suggests estimating the 
mean   and covariance matrix   in Eq. (8) as their sample counterparts. We also 
consider several popular passive portfolio-selection methods for comparison purposes: (i) 
the value-weighted market portfolio (VW), (ii) equal-weighted market portfolio (EW), 
and (iii) equal-weighted portfolio of the test portfolios (1/n).  
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We include in the portfolio-selection methods several restrictions to assess whether 
they improve portfolio investment performance. For example, we impose a position 
limit, following MacKinlay and Pástor (2000). In particular, if at least one weight in the 
portfolio exceeds 50% in absolute value, the portfolio weights are scaled down such that 
the largest absolute weight equals 50% and the remaining funds are invested in the 
VW.12 This restriction may be effective when a model produces extreme weights. 
Another restriction is imposed on the covariance matrix of the expected asset returns. 
MacKinlay and Pástor (2000) document evidence that imposing a simple structure on 
the covariance matrix may improve portfolio performance. For the sample moment 
approach, we consider the restriction of the identity covariance matrix, as done by 
MacKinlay and Pástor (2000). For the factor models, we consider the restriction of 
imposing a diagonal covariance matrix for disturbances. Lastly, we need to determine 
the estimation window. In particular, we consider 60 or 120 months, following 
MacKinlay and Pástor (2000). 

 
4.1.  Results for Test Portfolios 
 
We illustrate the out-of-sample Sharpe ratios of the four factor models for the 

SIZE×BM test portfolios in table 4.13 For robustness, the results are presented for not 
only the whole sample period but also sub-periods of approximately 20 years. Each 
factor model of the CAPM, FF3, and FF4 has eight variants by combining the position 
limit restriction, the covariance restriction, and the estimation window choice, whereas 
the new factor model has 40 variants (i.e., eight variants times the additional five 
choices of the number of the new factors from one to five). Interestingly, the position 
limit restriction does not provide an improvement for the CAPM but greatly improves 
the performances of the other three factor models. The unrestricted portfolio-selection 
methods perform very poorly.14 Unlike the position limit restriction, the covariance 
restriction and the estimation window choice improve the results in some cases but not 
in others. The number of factors in the new factor model significantly affects the 
portfolio performance. In particular, too few or too many new factors do not deliver the 
best results in most cases. For the whole sample period, the FF3 delivers the highest 
Sharpe ratio (0.201) with the position limit restriction, the diagonal covariance 
restriction, and an estimation window of 120 months. The new factor model yields the 

 
12 Alternatively, we also attempt to impose a position limit such that the absolute weights are limited to 

50% and the remaining portions are invested in the VW. We obtain similar results, which are omitted for 

brevity. 
13 For simplicity, we omit the results for the other three test portfolio sets, which are available upon 

request. 
14 This has been well documented by many previous studies, such as Dickinson (1974), Jobson and 

Korkie (1980), Michaud (1989), Best and Grauer (1991), Jorion (1991), Black and Litterman (1992), Green 

and Hollifield (1992), and Chopra and Ziemba (1993).  
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second-highest Sharpe ratio (0.190) with the position limit restriction, no diagonal 
covariance restriction, an estimation window of 60 months, and five new factors. The 
FF4 generates a Sharpe ratio of 0.183 and the CAPM a Sharpe ratio of 0.154, with both 
values being implemented with the position limit restriction, the diagonal covariance 
restriction, and an estimation window of 120 months. Understandably, the FF3 may 
perform the best among the factor models for the test portfolios SIZE×BM because the 
SMB and HML factors in the FF3 are designed to account for the effects of size and 
book-to-market ratio on which the SIZE×BM test portfolios are constructed by double 
sorts. 

 
 

Table 4.  Out-of-sample Sharpe Ratio of Factor Models  
for the SIZE×BM Test Portfolios 

pos limit diag T 1937-2013 1937-1956 1957-1976 1977-1996 1997-2013 

A.  Factor Model: CAPM 

0 0 60 0.145  0.159  0.112  0.173  0.143  
0 0 120 0.146  0.159  0.114  0.174  0.144  
0 1 60 0.152  0.177  0.112  0.168  0.150  
0 1 120 0.154  0.177  0.113  0.168  0.157  

1 0 60 0.145  0.159  0.112  0.173  0.143  
1 0 120 0.146  0.159  0.114  0.174  0.144  
1 1 60 0.152  0.177  0.112  0.168  0.150  

1 1 120 0.154  0.177  0.113  0.168  0.157  

B.  Factor Model: FF3 
0 0 60 0.043  0.054  0.070  0.067  -0.032  

0 0 120 0.088  0.139  0.099  0.233  0.037  
0 1 60 0.010  0.073  0.030  -0.073  -0.008  
0 1 120 0.039  0.048  0.077  0.237  -0.045  

1 0 60 0.165  0.173  0.175  0.162  0.146  
1 0 120 0.182  0.198  0.151  0.253  0.147  
1 1 60 0.167  0.200  0.168  0.152  0.142  
1 1 120 0.201  0.212  0.158  0.267  0.179  

C.  Factor Model: FF4 
0 0 60 0.011  0.076  0.078  0.116  -0.067  
0 0 120 -0.013  -0.050  0.137  0.122  -0.030  

0 1 60 -0.027  -0.063  0.046  -0.021  0.091  
0 1 120 -0.017  -0.089  -0.036  0.130  0.060  
1 0 60 0.178  0.213  0.167  0.144  0.194  

1 0 120 0.171  0.195  0.170  0.184  0.143  
1 1 60 0.167  0.185  0.155  0.155  0.176  
1 1 120 0.183  0.213  0.155  0.187  0.177  
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Table 4.  Out-of-sample Sharpe Ratio of Factor Models  
for the SIZE×BM Test Portfolios (Con’t) 

pos limit diag T nNF 1937-2013 1937-1956 1957-1976 1977-1996 1997-2013 
D.  Factor Model: New factors 

0 0 60 1 0.074  0.070  0.063  0.122  0.050  
0 0 60 2 -0.031  0.101  -0.057  -0.065  -0.066  
0 0 60 3 -0.050  -0.025  -0.048  -0.081  -0.034  
0 0 60 4 0.035  0.047  -0.022  0.091  0.004  
0 0 60 5 0.044  0.100  -0.042  0.068  0.061  
0 0 120 1 -0.016  -0.035  -0.022  -0.011  0.093  
0 0 120 2 -0.031  -0.061  0.093  -0.040  -0.046  
0 0 120 3 0.055  0.099  0.095  0.043  0.116  
0 0 120 4 0.032  0.046  0.080  0.197  0.014  
0 0 120 5 0.052  0.099  -0.007  -0.114  0.152  
0 1 60 1 -0.034  -0.003  0.081  -0.039  -0.090  
0 1 60 2 -0.029  -0.079  0.074  -0.088  0.002  
0 1 60 3 -0.033  -0.070  0.119  -0.057  -0.047  
0 1 60 4 0.002  0.003  0.131  -0.097  0.050  
0 1 60 5 0.033  -0.012  0.037  0.065  0.109  
0 1 120 1 0.028  -0.002  0.038  0.060  0.095  
0 1 120 2 0.050  0.081  0.054  0.049  0.031  
0 1 120 3 0.005  0.104  0.121  -0.034  0.079  
0 1 120 4 0.027  0.025  0.121  0.120  0.069  
0 1 120 5 0.032  0.038  0.037  -0.046  0.067  
1 0 60 1 0.154  0.142  0.154  0.150  0.178  
1 0 60 2 0.184  0.224  0.186  0.113  0.207  
1 0 60 3 0.181  0.178  0.202  0.123  0.231  
1 0 60 4 0.180  0.205  0.177  0.132  0.210  
1 0 60 5 0.190  0.225  0.180  0.162  0.188  
1 0 120 1 0.138  0.119  0.227  0.109  0.094  
1 0 120 2 0.136  0.113  0.235  0.140  0.069  
1 0 120 3 0.151  0.143  0.157  0.182  0.140  
1 0 120 4 0.173  0.181  0.140  0.207  0.178  
1 0 120 5 0.175  0.200  0.154  0.147  0.200  
1 1 60 1 0.142  0.137  0.167  0.118  0.150  
1 1 60 2 0.163  0.185  0.166  0.094  0.202  
1 1 60 3 0.179  0.187  0.181  0.126  0.222  
1 1 60 4 0.173  0.196  0.159  0.120  0.219  
1 1 60 5 0.173  0.200  0.152  0.134  0.209  
1 1 120 1 0.123  0.112  0.193  0.099  0.092  
1 1 120 2 0.142  0.179  0.160  0.145  0.087  
1 1 120 3 0.150  0.150  0.139  0.172  0.144  
1 1 120 4 0.153  0.138  0.131  0.190  0.159  
1 1 120 5 0.147  0.137  0.133  0.157  0.167  

Note: This table shows the out-of-sample Sharpe ratio of the factor models for the SIZE×BM test portfolios. 

The factor models are CAPM (panel A), the Fama and French (1993) three-factor model (panel B), the 
four-factor model combining the Fama-French three-factor model and Carhart’s (1997) momentum factor 
model (panel C), and the new factor model (panel D). A “pos limit” value of one indicates a position limit 
restriction. If at least one weight in the portfolio exceeds 50% in absolute value, the largest portfolio weight is 
limited to 50% and the remaining portion is invested into the value-weighted market portfolio. A “diag” 
value of one denotes the restriction of imposing a diagonal covariance matrix for disturbances. “T” denotes 
the estimation window. “nNF” indicates the number of the new factors. The sample period ranges from July 
1937 to December 2013. 
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Table 5.  Out-of-sample Sharpe Ratios for All Four Test Portfolios 
Model T 1937-2013 1937-1956 1957-1976 1977-1996 1997-2013 

A.  Test Portfolios: SIZE×BM 

VW Market 
 

0.137  0.184  0.087  0.153  0.114  

EW Market 
 

0.151  0.174  0.110  0.167  0.154  

1/n 
 

0.151  0.162  0.118  0.179  0.153  

S.M. 60 0.009  -0.064  -0.068  0.107  0.258  

S.M. 120 -0.021  -0.056  0.076  -0.084  0.349  

S.M. V=I 60 0.117  0.182  0.088  0.200  0.176  

S.M. V=I 120 0.159  0.158  0.144  0.193  0.158  

CAPM 
 

0.165  0.180  0.138  0.188  0.154  

FF3 
 

0.194  0.205  0.180  0.238  0.154  

FF4 
 

0.170  0.161  0.161  0.216  0.146  

NF 
 

0.202  0.140  0.249  0.272  0.167  

B.  Test Portfolios: SIZE×STR 

VW Market 
 

0.137  0.184  0.087  0.153  0.114  

EW Market 
 

0.151  0.174  0.110  0.167  0.154  

1/n 
 

0.144  0.169  0.103  0.165  0.137  

S.M. 60 -0.005  -0.010  0.100  -0.034  0.045  

S.M. 120 -0.056  -0.087  0.006  -0.073  0.121  

S.M. V=I 60 0.080  0.155  0.025  0.023  0.152  

S.M. V=I 120 0.065  0.225  0.145  0.048  0.145  

CAPM 
 

0.162  0.185  0.124  0.183  0.157  

FF3 
 

0.148  0.147  0.131  0.216  0.108  

FF4 
 

0.093  0.106  0.041  0.126  0.110  

NF 
 

0.163  0.129  0.206  0.168  0.162  

Model T 1938-2013 1938-1956 1957-1976 1977-1996 1997-2013 

C.  Test Portfolios: SIZE×MOM 

VW Market 
 

0.136  0.182  0.087  0.153  0.114  

EW Market 
 

0.150  0.171  0.110  0.167  0.154  

1/n 
 

0.143  0.165  0.104  0.162  0.144  

S.M. 60 0.127  0.021  0.217  0.182  0.226  

S.M. 120 0.390  0.214  0.466  0.631  0.311  

S.M. V=I 60 0.093  0.164  0.007  0.151  0.079  

S.M. V=I 120 0.131  0.168  0.149  0.132  0.119  

CAPM 
 

0.161  0.176  0.123  0.181  0.166  

FF3 
 

0.130  0.189  0.037  0.139  0.152  

FF4 
 

0.226  0.222  0.285  0.207  0.195  

NF 
 

0.243  0.150  0.306  0.267  0.281  
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Table 5.  Out-of-sample Sharpe Ratios for All Four Test Portfolios (Con’t) 
Model T 1950-2013 1950-1956 1957-1976 1977-1996 1997-2013 

D.  Test Portfolios: SIZE×LTR 
VW Market 

 
0.153  0.345  0.087  0.153  0.114  

EW Market 
 

0.166  0.312  0.110  0.167  0.154  
1/n 

 
0.180  0.308  0.122  0.185  0.168  

S.M. 60 0.030  0.083  -0.065  0.053  -0.066  
S.M. 120 0.105  -0.014  0.133  0.175  0.140  
S.M. V=I 60 0.180  0.311  0.104  0.210  0.168  
S.M. V=I 120 0.190  0.307  0.143  0.202  0.171  
CAPM 

 
0.190  0.314  0.134  0.203  0.164  

FF3 
 

0.207  0.353  0.112  0.207  0.238  
FF4 

 
0.173  0.372  0.126  0.187  0.100  

NF 
 

0.195  0.250  0.158  0.208  0.186  

Note: This table shows the out-of-sample Sharpe ratios for all test portfolios. Three passive 

portfolio-selection models are considered: the value-weighted market portfolio (VW Market), equal-weighted 

market portfolio (EW Market), and equal-weighted portfolio of the test portfolios (1/n). The sample moment 

(S.M.) approach is also considered. “V=I” indicates the restriction of imposing an identity matrix instead of 

the sample covariance matrix. The factor models are CAPM, the Fama and French (1993) three-factor model 

(FF3), the four-factor model combining the Fama-French three-factor model and Carhart’s (1997) momentum 

factor model (FF4), and the new factor model (NF). Among the multiple model specifications described in 

table 4, each factor model chooses at each point in time the best-performing specification for the previous 

period. “T” denotes the estimation window. The sample period ranges from July 1937 to December 2013 for 

the SIZE×BM and SIZE×STR test portfolio sets, from January 1938 to December 2013 for the SIZE×MOM 

test portfolio sets, and from January 1950 to December 2013 for the SIZE×LTR test portfolio sets. 

 
 
Given the multiple model specifications illustrated in table 4, choosing a particular 

model specification ex ante is problematic. Moreover, because the determination of the 
model specification significantly affects the model performance, it is important to 
choose a good model specification ex ante. Instead of developing a formal framework, 
we rely on an ad hoc but simple rule. 15  We choose at each point in time the 
best-performing specification for the previous period among multiple model 
specifications.16 This model choice rule is applied to the subset for which the position 
limit restriction is imposed. Table 5 reports the out-of-sample Sharpe ratios for all four 
test portfolio sets with the ex ante model choice rule. The results for the passive 

 
15 Parameter uncertainty has been well addressed within a Bayesian framework. See, for example, 

Zellner and Chetty (1965), Klein and Bawa (1976), Brown (1978), Kandel and Stambaugh (1996), and 

Barberis (2000). However, a formal framework has not yet been fully developed for model uncertainty 

arising from multiple restrictions or model specifications.  
16 Alternatively, we also choose the best- and second-best-performing specifications and take the average 

of the portfolio weights from the chosen two specifications. We obtain similar results, which are omitted for 

brevity. 
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portfolio-selection and sample moments method are also provided for comparison. The 
three passive portfolios perform quite well and are difficult to outperform, consistent 
with previous studies (for example, MacKinlay and Pástor (2000)). The identity 
covariance restriction on the sample moments method advocated by MacKinlay and 
Pástor (2000) works well in some cases but not in others. The FF3 may perform the best 
for the test portfolios SIZE×BM because the double sorts to generate the test portfolios 
are also taken into account by the FF3 factors. Interestingly, the new factor model 
performs better than the FF3 for the whole sample period. Similarly, the new factor 
model performs better than the FF4 for the test portfolios SIZE×MOM despite the FF4’s 
explicit inclusion of the momentum factor. Overall, the new factor model outperforms 
the other methods in most cases for not only the whole sample period but also the 
sub-periods.  

 
4.2.  Summary of Portfolio Performance Comparisons 
 
 

Table 6.  Summary of Model Comparisons 
Model 1937-2013 1937-1956 1957-1976 1977-1996 1997-2013 

A.  Average of the Sharpe ratio differences  

VW Market 0.060 -0.056 0.143 0.076 0.085 
EW Market 0.046 -0.041 0.120 0.062 0.046 
1/n 0.046 -0.034 0.118 0.056 0.049 
S.M. 0.161 0.160 0.184 0.152 0.084 
S.M. 0.096 0.153 0.060 0.067 -0.031 
S.M. V=I 0.083 -0.036 0.174 0.083 0.056 
S.M. V=I 0.064 -0.047 0.084 0.085 0.051 
CAPM 0.031 -0.047 0.100 0.040 0.039 
FF3 0.031 -0.056 0.115 0.029 0.036 
FF4 0.035 -0.048 0.077 0.045 0.061 

B.  Number of outperformances by the new factor model 
VW Market 4 1 4 4 4 
EW Market 4 1 4 3 4 
1/n 4 1 4 3 4 
S.M. 4 4 4 4 2 
S.M. 4 4 3 3 2 
S.M. V=I 4 1 4 3 3 
S.M. V=I 4 2 4 3 3 
CAPM 3 1 4 3 4 
FF3 3 1 4 2 1 
FF4 4 1 4 3 3 

Note: This table shows the average of the out-of-sample Sharpe ratio differences between the new factor 

model against alternative models for all test portfolios (panel A) and the number of outperformances by the 

new factor model against alternative models for four test portfolio sets (panel B). Please refer to the 

description of table 5 for more information. 
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To facilitate model comparison, Table 6 compares the out-of-sample Sharpe ratios of 
the new factor model against alternative models for the four test portfolio sets. In 
particular, Table 6 provides the averages of the Sharpe ratio differences between the new 
factor model against the alternative models and the number of outperformances by the 
new factor model against alternative models for the four test portfolio sets.  

The average out-of-sample Sharpe ratio of the new factor model is greater than those 
of all alternative models for the whole sample period. The relative gain of the new factor 
model is greatest against the sample moments methods, followed by the passive 
portfolios. For the three alternative factor models, the new factor model shows a similar 
level of gains. The new factor model outperforms alternative models for not only the 
whole sample period but also most sub-periods except for the first sub-period between 
1937 and 1956.  

We obtain similar results for the number of outperformances. Out of the four test 
portfolio cases, the new factor model outperforms the CAPM and the FF3 in three cases 
and the other models in all four cases for the whole sample period. As for the 
above-average out-of-sample Sharpe ratio analysis, the number of outperformances for 
the whole sample period largely hold for most sub-periods except for the first sub-period 
between 1937 and 1956. In summary, the new factor model outperforms the alternative 
models in most cases. 

 
4.3.  Effects of Model Specifications 
 
The aforementioned results illustrate that various model specifications significantly 

affect portfolio investment performance. To better understand the effects of model 
specifications, table 7 presents the mean effects of each model specification, keeping the 
other specifications constant over all test portfolio sets. The position limit restriction 
greatly improves the performances of the FF3, FF4, and new factor model, with similar 
levels of improvements. On the other hand, the diagonal covariance restriction does not 
significantly affect performance on average. Compared to a short estimation window 
(i.e., 60 months), a longer window (i.e., 120 months) tends to yield better performances. 
If we have no preferred model specification, the ex ante simple rule of model 
specification choice greatly improves performance relative to the average performances 
of the alternative specifications. In particular, the improvements are the greatest for the 
new factor model and the lowest for the CAPM. Compared with even the ex post best 
among alternative model specifications, the ex ante rule generates slightly better 
performance for the CAPM and the new factor model and only slightly worse 
performance for the FF3 and the FF4 model. The ex ante rule might yield better 
performances than the ex post best-performing specification when the best-performing 
specification changes over time but tends to persist. The number of the new factors 
significantly affects the performance of the new factor model. In particular, the new 
factor model with three factors produces the best performance in most cases. 
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Table 7.  Effects of Model Specifications 
Model 1937-2013 1937-1956 1957-1976 1977-1996 1997-2013 

A.  Position limit restriction vs. no restriction 
CAPM 0.000  0.000  0.000  0.000  0.000  
FF3 0.137  0.142  0.084  0.119  0.138  
FF4 0.146  0.139  0.107  0.097  0.114  
NF 0.138  0.140  0.116  0.116  0.135  

B.  Diagonal covariance restriction vs. no restriction 
CAPM 0.005  0.009  -0.002  -0.003  0.012  
FF3 0.005  0.013  -0.010  0.002  0.012  
FF4 0.001  -0.039  -0.006  0.009  0.013  
NF -0.003  0.007  -0.003  -0.005  -0.004  

C.  Estimation window T: 120 vs.60 
CAPM 0.000  -0.001  0.001  0.000  0.000  
FF3 0.001  -0.007  0.010  0.008  0.014  
FF4 0.022  0.023  0.006  0.064  0.009  
NF 0.004  -0.023  0.038  0.018  0.025  

D.  Model specification choice: ex ante rule vs. ex post best performance 
CAPM 0.010  0.002  0.018  0.013  0.001  
FF3 -0.002  -0.008  -0.020  -0.005  -0.012  
FF4 -0.012  -0.013  -0.025  -0.015  -0.034  
NF 0.022  -0.078  0.002  0.038  -0.041  

E.  Model specification choice: ex ante rule vs. ex post average performance 
CAPM 0.014  0.008  0.021  0.016  0.008  
FF3 0.088  0.083  0.051  0.106  0.079  
FF4 0.087  0.089  0.072  0.067  0.053  
NF 0.125  0.087  0.133  0.161  0.089  
F.  Average out-of-sample Sharpe ratio of the new factor model along with the number of new factors 
nNF = 1 0.064  0.053  0.090  0.055  0.105  
nNF = 2 0.075  0.093  0.086  0.064  0.080  
nNF = 3 0.091  0.091  0.131  0.091  0.114  
nNF = 4 0.083  0.094  0.118  0.088  0.104  
nNF = 5 0.084  0.096  0.110  0.077  0.107  

Note: This table shows the effects of various model specifications: the effects of position limit restriction 

(panel A), diagonal covariance restriction (panel B), estimation window choice (panel C), ex ante rule of 

model specification choice (panel D and E), and the number of the new factors for the new factor model 

(panel F). The effects are measured as the mean difference of the Sharpe ratios from panel A to E for all of 

the test portfolio sets. “nNF” in panel F indicates the number of the new factors in the new factor model. 

Please refer to the description of table 5 for more information. 

 
 

5.  CONCLUSION 
 
In this paper, we apply the new factor model proposed by Suh, Song, and Lee (2014) 

to portfolio-selection problems and compare its portfolio investment performance with 
that of other popular portfolio-selection methods. The new factors are formed from a 
well-characterized subset of the asset universe called basis assets. These basis assets are 
structured based on the firm characteristics found by previous studies to be useful for 
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explaining (co)variation in asset returns. Suh, Song, and Lee (2014) provide empirical 
results that the new factors exhibit better asset-pricing performance than popular extant 
asset-pricing factors.  

Performance comparison results show that the new factors provide better portfolio 
investment performance than alternative methods for various test portfolios and various 
periods. However, some caveats are in order. Not only factors but also other model 
specifications affect performance. Our empirical results show that various model 
specification choices beyond the choice of factors also greatly affect portfolio 
investment performance. Although we propose a simple rule for model specification 
choice that proves to work well in many cases, more efficient methods should be 
developed to improve portfolio management. 
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